Symmetry & Group Theory in Chemistry
UNIT 1
1.0 –
Introduction
1.1 - Objectives
1.2 – Symmetry & group theory
1.2.1 -Symmetry elements
1.2.2 –
Symmetry operation
1.2.3 -
Group & Subgroups
1.2.4–
Relation between orders of a finite group & its subgroups
1.2.5
-Conjugacy relation & classes
1.2.6 – Point symmetry group
1.2.7–
Schonflies symbols or notations
1.2.8
-Representation of Group by Matrices
1.2.9 –
Character of a Representation
1.2.10 –
The Great Orthogonality Theorem & its importance
1.2.11 – Character tables & their use
https://drive.google.com/file/d/0BxSmC2kUk3lpMDJROEdKUlMwMU0/view?usp=sharing
UNIT 2
1.3 - Unifying Principles
1.3.1–
Electromagnetic Spectum
1.3.2–
Interaction of Electromagnetic spectrum with matter
1.3.3 –
Absorption of Radiation
1.3.4 - Emission of Radiatuon
1.3.5-
Transmission of Radiation
1.3.6-
Reflection of Radiation
1.3.7–Refraction
of Radiation
1.3.8–Dispersion
of Radiation
1.3.9 –
Polarization
1.3.10–
Scattering of Radiation
1.3.11 – The Uncertainty relation
1.3.12 –
Natural line width & natural line Broadening
1.3.13 –
Transition Probability
1.3.14-
Result of Time Dependent Perturbation theory
1.3.15 –
Transition Moment
1.3.16 – Selection Rules
1.3.17
–Intensity of spectral lines
1.3.18
–Born Oppenheimer Approximation
1.3.19-
sum up
1.3.20-
check your progress : key
1.3.21 - References
UNIT 3
Structure
2.0- Introduction
2.1- Objective
2.2-
Microwave spectroscopy
2.2,1 –
Classification of molecule
2.2,2 –
Rigid rotor model
2.2,3 –
Effect of isotopic substitution on the transition frequency
2.2,4 –
Non-rigid rotor
2.2,5 – Stark effect
2.2,6 -
Nuclear and electron spin interaction
2.2,7 -
Application
2.3- Infrared Spectroscopy
2.3,1-
Harmonic Oscillator & Vibrational energies of diatomic molecules
2.3,2-
Force Constant & Bond strength
2.3,3-
Anharmonicity
2.3,4- Morse potential energy diagram
2.3,5-P.Q.R.
Branches
2.3,6-
Vibration of polyatomic molecules
2.3,7 -
Factor affecting the band position & intensities
2.3,8 -
Far IR region
2.3,9 - Metal ligand vibrations
2.3,10 -
Normal Co-ordinate Analysis
2.4- RAMAN SPECTROSCOPY
2.4,1-Raman
Effect
2.4,2-
Classical Theory
2.4,3 -
Quantum Theory
2.4,4 -
Pure Rotational, Vibrational & Rotational- Vibrational Raman Spectra
2.4,5-
Mutual Exclusion Principle
2.4,6 -
Resonance Raman Spectroscopy
2.4,7 -
Coherent anti stokes Raman Spectroscopy
2.5- Let us sum up
2.6 - Check your Progress- The
Key
2.7- References
UNIT 4
UNIT 4
STRUCTURE:
3.0
|
-
|
Introduction
|
||
3.1
|
-
|
Objetives
|
||
3.2 - ATOMIC SPECTRA
|
||||
|
|
3.2.1
|
– Energies of Atomic Orbitals
|
|
|
|
3.2.2
|
-
|
Vector
Representation of Momenta
|
|
|
3.2.3
|
-
|
Vector
Coupling
|
|
|
3.2.4
|
-
|
Spectra
of Hydrogen atom
|
|
|
3.2.5
|
-
|
Spectra
of Alkali metal atoms
|
3.3
|
|
Molecular Spectroscopy
|
||
|
|
3.3.1
|
-
|
Energy
Levels and Molecular Orbitals
|
|
|
3.3.2
|
-
|
Vibrionic Transitions and Vibrational Progression
|
|
|
3.3.3
|
- Geometry of the Excited State
|
|
|
|
3.3.4
|
– Frank
Condon Principle
|
|
|
|
3.3.5
|
- Electronic spectra of polyatomic molecules
|
|
|
|
3.3.6
|
-
|
Emission
spectra
|
|
|
3.3.7
|
-
|
Radiative
& non radioactive decay
|
|
|
3.3.8
|
-
|
Internal
Conversion
|
|
|
3.3. 9
|
- Spectra of transition metal complexes
|
|
|
|
3.3.10
-
|
Charge
transfer spectra
|
|
3.4 - PHOTOELECTRON
SPECTROSCOPY
|
||||
|
|
3.4.1 – Basic Principles
|
||
|
|
3.4.2
|
- Photoelectric Effect
|
|
|
|
3.4.3
|
- Ionization Process
|
|
|
|
3.4.4 - Koopman’s Theorm
|
||
|
|
3.4.5 - Photoelectron
spectra of simple molecules
|
||
|
|
3.4.6 - ESCA
|
||
|
|
3.4.7 - Chemical
Information from ESCA
|
||
|
|
3.4.8 - Auger electron
spectroscopy
|
||
3.5 -
PHOTOACOUSTIC SPECTROSCOPY
|
||||
|
|
3.5.1 - Basic Principle
|
||
|
|
3.5.2 - Instrumentation
|
||
|
|
3.5.3 - PAS gases
|
||
|
|
3.5.4 - Condensed systems
|
||
|
|
3.5.5 - Chemical and
surface applications
|
||
|
|
3.5.6 - Sum up
|
||
|
|
3.5.7 - Check your
progress:key
|
||
|
|
3.5.8
|
-
|
References
|
https://drive.google.com/file/d/0BxSmC2kUk3lpbmh3aWpjV1dLeUE/view?usp=sharing
Unit -5 Magnetic Resonance Spectroscopy
Structure
4.0
Introduction
4.1 Objectives
4.2 - Nuclear Magnetic Resonance Spectroscopy
4.2.1 - Nuclear Spin
4.2.2 -
NMR active nuclei
4.2.3 -
Spinning Nuclei-Magnetic moments-Larmor Precision
4.2.4 -
Theory of NMR
4.2.5 -
Nuclear Resonance
4.2.6 –
Nuclear Saturation & Relaxation Process
4.2.7 –
Instrumentation
4.2.8 –
Shielding of magnetic nuclei
4.2.9 –
Spin –Spin interactions
4.2.10 – Classification (ABK, AMX,ABC,A2B2)
4.2.11 - Spin Decoupling
4.2.12 - NMR studies of nuclei other than proton – 13C,19F,31P
4.2.13 – FTNMR
4.2.14 –
Advantages of FTNMR
4.2.15 -
Use of NMR in medical diagnosis
4.3 Electron Spin Spectroscopy
4.3.1 -Types of substances with unpaired electrons (ESR active species)
4.3.2
-Basic Principle of ESR specrum
4.3.3
-g-value & factors affecting g-
value
4.3.4
-Determination of value of g
4.3.5
-Relaxation & Saturation
4.3.6-Instrumentation
4.3.7
-Hyperfine splitting constant
4.3.8
-Zero Field splitting
4.3.9
-Kramer‘s Degeneracy
4.3.10-
Spin Hamiltonian
4.3.11
-Applications of ESR Spectrum
4.3.12
–ENDOR & ELDOR
4.4 Nuclear Quadrupole Resonance Spectroscopy
4.4.1 - Basics of NQR
4.4.2 -
Nuclear Electric Quadrupole
4.4.3 -
Theory of NQR
4.4 .4 -
Electric Field Gradient
4.4.5 -
Quadrupole moment
4.4.6 -
Quadrupole Coupling constannt
4.4.7 -
Instrumentation for NQR
4.4.8 -
Splitting in NQR
4.4.9 -
Applications of NQR Spectroscopy
4.4.10-
Let us sum up
4.4.11 –
Check your progress - key
4.4.12 -
Reference
UNIT 6
STRUCTURE
5.0–Introduction
5.1- Objective
5.2. – X-Ray Diffraction
5.2.1 – Bragg Condition
5.2.2 – Bragg law and method
5.2.3 - Technique for x ray structure analysis of
crystals
5.2.4 – Laue method
5.2.5 – Debye scherrer method of x-ray analysis
5.2.6 - Miller Indices
5.2.7 - Identification of unit cell
5.2.8 - Structure of Simple lattices
5.2.9 – Structure factor & its relation to intensity
& electron density
5.2.10- Phase problem
5.2.11- Description of the procedure of x-ray structure
analysis
5.2.12 - Absolute configuration of molecule
5.2.13- Ramchandran diagram
5.2.14 – Let us sum up
5.3. Electron Diffraction
5.3.1- Objectives of electron diffraction
5.3.2-
Instrumentation
5.3.3
- Scattering angle
5.3.4- Scattering intensity
5.3.5- Wierl Equation
5.3.6- Measurement Technique
5.3.7- Elucidation of structure of simple gas phase
molecules
5.3.8- Low Energy Diffraction
5.3.9- Determination of structure of surfaces
5.3.10-Applications of Electron diffraction
5.11 -Let us sum up
5.4 .- Neutron Diffraction
5.4.1 Objectives of Neutron Diffraction
5.4.2 Principle of neutron diffraction
5.4.3 Scattering of Neutrons by solids & liquids
5.4.4 Magnetic Scattering
5.4.5- Measurement technique
5.4.6- Applications
5.4.7 - Let us Sum Up
5.4.8- Check Your Progress :Key
5.4.9-References
No comments:
Post a Comment