Monday, September 25, 2017

Symmetry & Group Theory in Chemistry



Symmetry & Group Theory in Chemistry


UNIT 1


1.0 – Introduction

1.1 - Objectives
1.2 – Symmetry & group theory
1.2.1 -Symmetry elements

1.2.2 – Symmetry operation
1.2.3 - Group & Subgroups
1.2.4– Relation between orders of a finite group & its subgroups
1.2.5 -Conjugacy relation & classes
1.2.6 – Point symmetry group

1.2.7– Schonflies symbols or notations
1.2.8 -Representation of Group by Matrices

1.2.9 – Character of a Representation
1.2.10 – The Great Orthogonality Theorem & its importance

1.2.11 – Character tables & their use

https://drive.google.com/file/d/0BxSmC2kUk3lpMDJROEdKUlMwMU0/view?usp=sharing


UNIT 2
1.3.1– Electromagnetic Spectum
1.3.2– Interaction of Electromagnetic spectrum with matter
1.3.3 – Absorption of  Radiation
1.3.4 - Emission of  Radiatuon

1.3.5- Transmission of Radiation
1.3.6- Reflection of Radiation
1.3.7–Refraction of  Radiation
1.3.8–Dispersion of Radiation

1.3.9 – Polarization
1.3.10– Scattering of Radiation
1.3.11 – The Uncertainty relation

1.3.12 – Natural line width & natural line Broadening
1.3.13 – Transition Probability
1.3.14- Result of Time Dependent Perturbation theory
1.3.15 – Transition Moment
1.3.16 – Selection Rules

1.3.17 –Intensity of spectral lines
1.3.18 –Born Oppenheimer Approximation
1.3.19- sum up
1.3.20- check your progress : key
1.3.21 - References



https://drive.google.com/file/d/0BxSmC2kUk3lpMDJROEdKUlMwMU0/view?usp=sharing

UNIT 3
UNIT 3


Structure

2.0- Introduction
2.1- Objective
2.2- Microwave spectroscopy

2.2,1 – Classification of molecule
2.2,2 – Rigid rotor model
2.2,3 – Effect of isotopic substitution on the transition frequency
2.2,4 – Non-rigid rotor
2.2,5 – Stark effect

2.2,6 - Nuclear and electron spin interaction
2.2,7 - Application
2.3- Infrared Spectroscopy
2.3,1- Harmonic Oscillator & Vibrational energies of diatomic molecules
2.3,2- Force Constant & Bond strength
2.3,3- Anharmonicity
2.3,4- Morse potential energy diagram

2.3,5-P.Q.R. Branches
2.3,6- Vibration of polyatomic molecules
2.3,7 - Factor affecting the band position & intensities
2.3,8 - Far IR region
2.3,9 - Metal ligand vibrations

2.3,10 - Normal Co-ordinate Analysis

2.4- RAMAN SPECTROSCOPY

2.4,1-Raman Effect

2.4,2- Classical Theory

2.4,3 - Quantum Theory

2.4,4 - Pure Rotational, Vibrational & Rotational- Vibrational Raman Spectra

2.4,5- Mutual Exclusion Principle

2.4,6 - Resonance Raman Spectroscopy

2.4,7 - Coherent anti stokes Raman Spectroscopy

2.5- Let us sum up

2.6 - Check your Progress- The Key


2.7- References

https://drive.google.com/file/d/0BxSmC2kUk3lpRUl3QjVfR18zOG8/view?usp=sharing
UNIT 4
UNIT 4


STRUCTURE:


3.0
-
Introduction
3.1
-
Objetives
3.2 - ATOMIC SPECTRA


3.2.1
– Energies of Atomic Orbitals


3.2.2
-
Vector Representation of Momenta


3.2.3
-
Vector Coupling


3.2.4
-
Spectra of Hydrogen  atom


3.2.5
-
Spectra of Alkali metal atoms
3.3

Molecular Spectroscopy


3.3.1
-
Energy Levels and Molecular Orbitals


3.3.2
-
Vibrionic Transitions and Vibrational Progression


3.3.3
-  Geometry of the Excited State


3.3.4
– Frank Condon Principle


3.3.5
-  Electronic spectra of polyatomic molecules


3.3.6
-
Emission spectra


3.3.7
-
Radiative & non radioactive decay


3.3.8
-
Internal Conversion


3.3. 9
-  Spectra of transition metal complexes


3.3.10 -
Charge transfer spectra
3.4 - PHOTOELECTRON SPECTROSCOPY


3.4.1 – Basic Principles


3.4.2
- Photoelectric Effect


3.4.3
- Ionization Process


3.4.4 - Koopman’s Theorm


3.4.5 - Photoelectron spectra of simple molecules


3.4.6 - ESCA


3.4.7 - Chemical Information from ESCA


3.4.8 - Auger electron spectroscopy
3.5 - PHOTOACOUSTIC SPECTROSCOPY


3.5.1 - Basic Principle


3.5.2 - Instrumentation


3.5.3 - PAS gases


3.5.4 - Condensed systems


3.5.5 - Chemical and surface applications


3.5.6 - Sum up


3.5.7 - Check your progress:key


3.5.8
-
References

https://drive.google.com/file/d/0BxSmC2kUk3lpbmh3aWpjV1dLeUE/view?usp=sharing

UNIT 5

Structure
4.0 Introduction

4.1 Objectives

4.2 - Nuclear Magnetic Resonance Spectroscopy
4.2.1 - Nuclear Spin

4.2.2 - NMR active nuclei
4.2.3 - Spinning Nuclei-Magnetic moments-Larmor Precision
4.2.4 - Theory of NMR
4.2.5 - Nuclear Resonance
4.2.6 – Nuclear Saturation & Relaxation Process

4.2.7 – Instrumentation
4.2.8 – Shielding of magnetic nuclei
4.2.9 – Spin –Spin interactions
4.2.10 – Classification (ABK, AMX,ABC,A2B2)
4.2.11 - Spin Decoupling
4.2.12 - NMR studies of nuclei other than proton – 13C,19F,31P
4.2.13 – FTNMR

4.2.14 – Advantages of  FTNMR
4.2.15 - Use of NMR in medical diagnosis

4.3 Electron Spin Spectroscopy
4.3.1 -Types of substances with unpaired electrons (ESR active species)

4.3.2 -Basic Principle of ESR specrum
4.3.3 -g-value  & factors affecting g- value
4.3.4 -Determination of value of g
4.3.5 -Relaxation & Saturation
4.3.6-Instrumentation
4.3.7 -Hyperfine splitting constant
4.3.8 -Zero Field splitting
4.3.9 -Kramer‘s Degeneracy
4.3.10- Spin Hamiltonian
4.3.11 -Applications of ESR Spectrum
4.3.12 –ENDOR & ELDOR

4.4 Nuclear Quadrupole Resonance Spectroscopy
4.4.1 - Basics of NQR

4.4.2 - Nuclear Electric Quadrupole
4.4.3 - Theory of NQR
4.4 .4 - Electric Field Gradient
4.4.5 - Quadrupole moment
4.4.6 - Quadrupole Coupling constannt
4.4.7 - Instrumentation for NQR
4.4.8 - Splitting in NQR
4.4.9 - Applications of NQR Spectroscopy
4.4.10- Let us sum up
4.4.11 – Check your progress - key

4.4.12 - Reference

https://drive.google.com/file/d/0BxSmC2kUk3lpNXdLRklIWFJFMjQ/view?usp=sharing

UNIT 6

STRUCTURE

5.0–Introduction
5.1- Objective
5.2. – X-Ray Diffraction
5.2.1 – Bragg Condition
5.2.2 – Bragg law and method

5.2.3 - Technique for x ray structure analysis of crystals
5.2.4 – Laue method
5.2.5 – Debye scherrer method of x-ray analysis
5.2.6 - Miller Indices
5.2.7 -     Identification of unit cell

5.2.8 - Structure of Simple lattices
5.2.9 – Structure factor & its relation to intensity & electron density
5.2.10- Phase problem
5.2.11- Description of the procedure of x-ray structure analysis
5.2.12 - Absolute configuration of molecule

5.2.13- Ramchandran diagram
5.2.14 – Let us sum up

5.3. Electron Diffraction

5.3.1- Objectives of electron diffraction

5.3.2- Instrumentation
5.3.3 - Scattering angle
5.3.4- Scattering intensity

5.3.5- Wierl Equation
5.3.6- Measurement Technique
5.3.7- Elucidation of structure of simple gas phase molecules
5.3.8- Low Energy Diffraction
5.3.9- Determination of structure of surfaces

5.3.10-Applications of Electron diffraction
5.11 -Let us sum up

5.4 .- Neutron Diffraction
5.4.1 Objectives of Neutron Diffraction

5.4.2 Principle of neutron diffraction
5.4.3 Scattering of Neutrons by solids & liquids
5.4.4 Magnetic Scattering
5.4.5- Measurement technique
5.4.6- Applications

5.4.7 - Let us Sum Up
5.4.8- Check Your Progress :Key
5.4.9-References



No comments:

Post a Comment